

Pacific Northwest

Lossy Compression for Deep Neural Networks

Deep Neural Networks

- Deep Neural Networks (DNNs) has been extensively developed and used
 - LeNet
 - AlexNet
 - GoogleNet
 - VGG
 - ResNet
- They have becoming more powerful and can handle more complicated tasks
 - Image classification
 - Object detection
 - Etc.

Robots

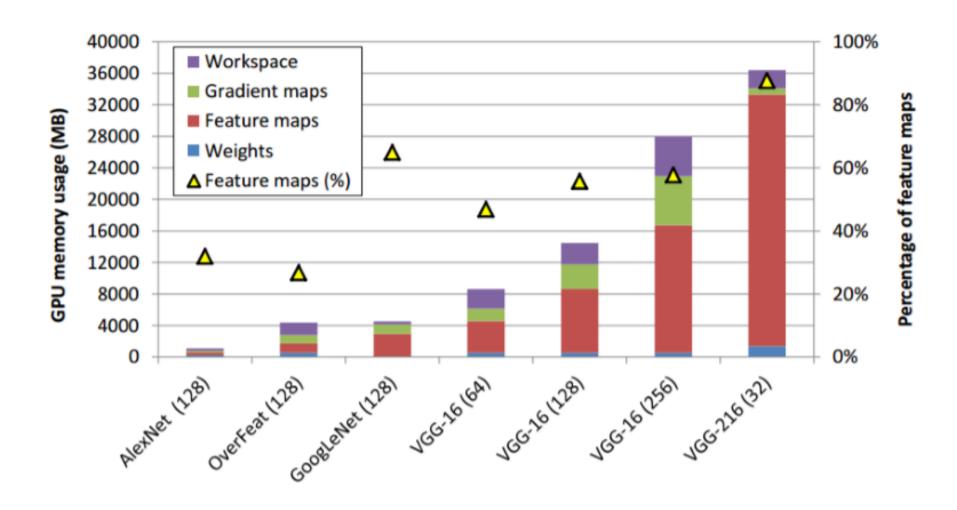
Glasses

Drones

Growing number of parameters

- More powerful DNNs are made possible by
 - More parameters
 - More complicated structures
- ► As more advanced DNNs are developed → DNNs becomes deeper
 - Lenet-5: 4 layers
 - Alexnet: 7 layers
 - VGG-16: 16 layers
 - ResNet: 18 152 layers

DNNs storage sizes are growing fast



Challenges bring by larger DNNs

- Limited by the available RAM/storage space and network performance, it can be hard to:
 - Transferring DNNs between systems during training.
 - E.g., coarse tuning on one system and fine tuning on another system.
 - Publishing pre-trained DNNs on webs.
 - E.g., ILSVRC winners want to share their novel DNNs.
 - Deploying DNNs on systems for inference.
 - E.g., An application that uses pre-trained DNN needs an update from vender.
 - Loading DNNs on GPUs with small memory
 - E.g., Sometimes our training/testing platform can be very heterogeneous.

What can users do with large models?

- ▶ Reduce batch size to make more space for the model. However, it may:
 - Decrease training speed
 - Impact accuracy
- Distribute on multiple GPUs or nodes
 - More computing resource requirement
 - Efficient design can be complicated

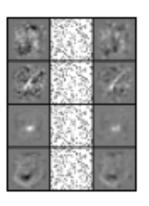
No perfect choice for users!

Model compression

DNNs are over-parameterized [Denil et al. NIPS'13]

Key Insight: Weights in DNN tend to be structured and redundant.

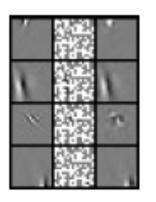
- - CNN trained on STL-10



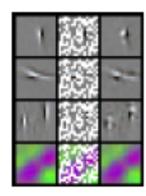
MLP trained on MNIST

CNN trained on CIFAR-10

- 1. Original parameters set
- 2. A few parameters chosen at random
- 3. Random set can be used to predict the remaining parameters



R-ICA trained on Hyvarinen's natural image dataset



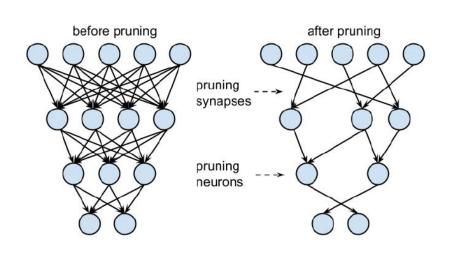
R-ICA trained on STL-10 trained

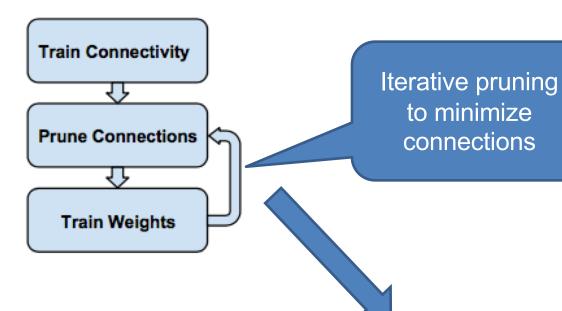
7

Current approaches for compressing model

- Matrix decomposition:
 - Denton et al. NIPS'14, Denil et al. NIPS'13
- Network pruning:
 - Han et al. ICLR'18, Han et al. ICLR'17, Han et al. ICLR'15
- Weight quantization:
 - Yunchao et al. ICLR'15, Han et al. ICLR'16, Courbariaux et al. NIPS'15, Gupta et al. ICML'15
- Etc.

Network pruning [Han et al. ICLR'15]

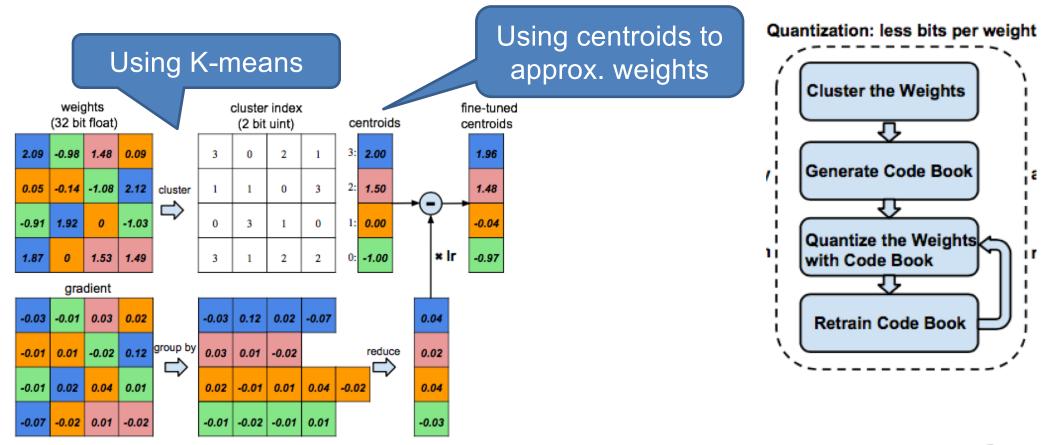




- 1. Run normal network training
 - Find out which connections are important
- 2. Prune the small-weight connections
 - L1/L2 regularization
- 3. Retrain the network on remaining sparse connections
 - Dropout to prevent overfitting

Store sparse weights in CSR/CSC format

Weight Quantization - Weight Sharing [Han et al. ICLP Pacific No.



n = num. of weights (16)

b = num. of bit for original data (32)

k = num. of clusters (4)

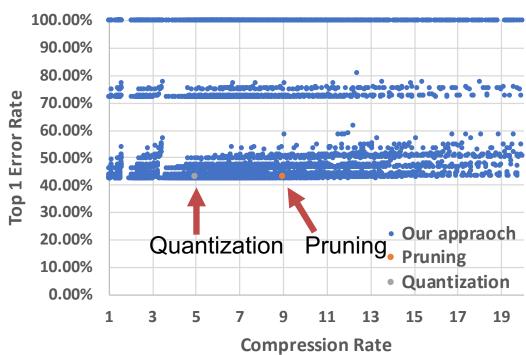
Compress rate =
$$\frac{nb}{nlog_2(k) + kb}$$
 = 3.2

Error-bounded Compression for DNN

- Error-bounded compression can be viewed as generalized approach compared with pruning and quantization.
 - Pruning is a compression technique with error bound fixed at 100%.
 - Quantization is a compression technique with *limited* but *uncontrollable* error bound.
- ► SZ-2.0*: error-bound controlled lossy compressor
 - Based on multi-dimensional fitting
 - Error-bounded quantization techniques
 - Linear regression

Error-bounded Compression for DNN

- Error-bounded compression is *adjustable* and *controllable*.
 - Compression strength is adjustable through compression parameters.
 - E.g.: Applying different compression configurations (~6500) on AlexNet (tested on ILSVRC'12)
- Error-bounded compression shows promising performance.
 - Better compression rate.
 - Comparable accuracy loss.

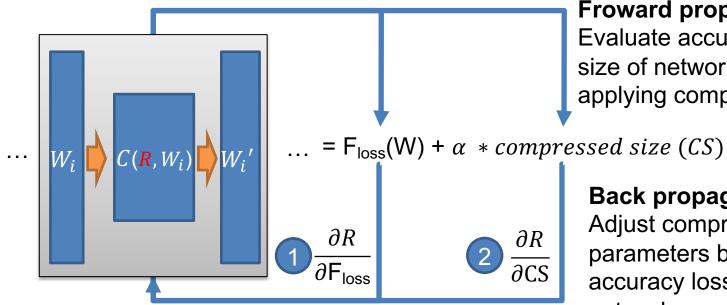


Self-adaptive Compression for DNN

- ► As DNNs becoming deeper (e.g., ResNet-152) much more compression configurations need to be searched to find the best one.
- Compression configurations can grow exponentially as DNN grow:
 - Lenet-5 (~6.5K)
 - Alexnet (~4.7M)
 - VGG-16 (~1.8*10¹⁵)
 - ResNet-152 (~1.1*10¹⁴⁵)
- Impractical to apply brute force search or search by hand.

Self-adaptive Compression for DNN

- We propose self-adaptive compression for DNN
 - Compression parameters (R): *Hyper-parameter* → *Learnable parameter*
 - Learn compression parameters as if they are network parameters.



Add compression layer

(compress first, then decompress)

Froward propagation:

Evaluate accuracy loss and size of network after applying compression.

Back propagation:

Adjust compression parameters based on accuracy loss and size of network

- Pushes R → weaker compression
- Pushes R → stronger compression

Customized SGD:

For each layer:

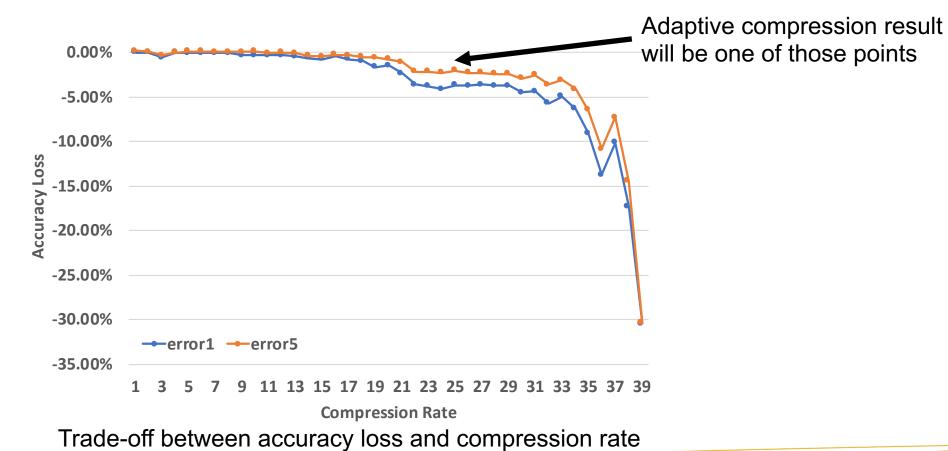
Derive 1 based on F_{loss}

Derive 2 based on CS

Update R = R - Ir * (

Self-adaptive Compression for DNN

- We propose self-adaptive compression for DNN
 - Compression parameters (R): Hyper-parameter → Learnable parameter
 - Learn compression parameters as if they are network parameters.



Thanks!

► Questions?